tuberosity reduction - перевод на арабский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

tuberosity reduction - перевод на арабский

PROCESS OF REDUCING THE NUMBER OF RANDOM VARIABLES UNDER CONSIDERATION
Dimension reduction; Dimensionality Reduction; Dimensionality reduction algorithm; Linear dimensionality reduction
  • A visual depiction of the resulting LDA projection for a set of 2D points.
  • A visual depiction of the resulting PCA projection for a set of 2D points.

tuberosity reduction      
إِنْقاصُ الأُحْدوبَة
tuberosity reduction      
‎ إِنْقاصُ الأُحْدوبَة‎
closed reduction         
ORTHOPAEDIC SURGICAL PROCEDURE
Bone reduction; Fracture reduction; Reduction of fracture; Closed reduction of fracture; Open reduction of fracture; Reponated; Reponate; Reponation; Closed reduction
‎ رَدٌّ مُغْلَق‎

Определение

reduce
v.
1) (D; tr.) to reduce in (he was reduced in rank)
2) (d; tr.) to reduce to (she was reduced to poverty; the corporal was reduced to the rank of private)

Википедия

Dimensionality reduction

Dimensionality reduction, or dimension reduction, is the transformation of data from a high-dimensional space into a low-dimensional space so that the low-dimensional representation retains some meaningful properties of the original data, ideally close to its intrinsic dimension. Working in high-dimensional spaces can be undesirable for many reasons; raw data are often sparse as a consequence of the curse of dimensionality, and analyzing the data is usually computationally intractable (hard to control or deal with). Dimensionality reduction is common in fields that deal with large numbers of observations and/or large numbers of variables, such as signal processing, speech recognition, neuroinformatics, and bioinformatics.

Methods are commonly divided into linear and nonlinear approaches. Approaches can also be divided into feature selection and feature extraction. Dimensionality reduction can be used for noise reduction, data visualization, cluster analysis, or as an intermediate step to facilitate other analyses.